SOME SEMIGROUPS ON AN n-CELL

BY

ANNE LESTER HUDSON(1)

The purpose of this paper is to prove a theorem which is a generalization of a theorem proved by the author in [5]. The latter theorem is a special case of the one presented here. The theorem to be proved is:

THEOREM. Let S be a semigroup which is topologically a closed n-cell, $n \ge 2$. Suppose for x and y in B, the bounding (n-1)-sphere of S, xy = x.

Then: (1) If S = K, the minimal ideal of S, then S consists entirely of left zeros, that is, xS = x for each x in S.

- (2) If $S \neq K$, then K is a deformation retract of S and K consists entirely of left zeros for S. Also there exists in S an I-semigroup T with the following properties:
 - (i) $S\backslash K^0 = BT$, where K^0 denotes the interior of K.
- (ii) If b_1 and b_2 are in B and t_1 and t_2 belong to T and if $b_1t_1 = b_2t_2$ then $t_1 = t_2$.
 - (iii) For b_1 and b_2 in B, t_1 and t_2 in T, $(b_1t_1)(b_2t_2) = b_1(t_1t_2)$.

For definitions and background material the reader is referred to [6; 11.] The proof of the theorem is divided into a sequence of lemmas throughout which the hypotheses of the theorem are assumed to hold. The case S = K is easily disposed of in Lemmas 1, 2 and 3. The remainder of the lemmas is devoted to the case $S \neq K$. In this case, the general idea is to prove that the relation, \leq , on Q the Rees quotient of S by the ideal K, defined by $a \leq b$ if and only if a = bc for some c in Q is a partial order on Q. Knowing this relation is a partial order, it is possible to construct an I-semigroup J in Q so that $Q = \pi(B)J$ where π is the natural map from S onto Q. This I-semigroup J is then "lifted" into S and it is shown that the I-semigroup T where $\pi(T) = J$ satisfies the conclusion of the theorem.

LEMMA 1. Each element of B is a right identity for S. If $s \in S$ and n a positive integer then there exists an element $a \in S$ such that $a^n = s$.

Proof. The proof of this lemma depends on the following theorem [4]: If α is a continuous function from S to S such that α is the identity on B, then α maps S onto S.

To prove the first part of the lemma, let $b_0 \in B$ be a fixed element of B

Received by the editors August 1, 1960.

⁽¹⁾ This paper is part of a doctoral dissertation prepared under the direction of P. S. Mostert. The paper was written while the author held a National Science Foundation Cooperative Fellowship.

and define $\alpha: S \rightarrow S$ by $\alpha(x) = xb_0$. Then for b in B, by hypothesis, $\alpha(b) = bb_0$ = b, hence by the above theorem, α maps S onto S. Thus $Sb_0 = S$ and since b_0 is an idempotent it follows immediately that b_0 is a right identity for all of S. Since b_0 was arbitrary in B, the first part of the lemma follows.

For the remainder of the lemma let n be a fixed positive integer and define $\alpha: S \rightarrow S$ by $\alpha(x) = x^n$ for $x \in S$. Since B consists of idempotents α is the identity on B and hence maps S onto S. This, however, implies that each element of S has an nth root in S which is the statement of the lemma.

LEMMA 2. For x in S there exists an idempotent e in S such that ex = x = xe.

Proof. Let p belong to S and let $\{p_n\}$ be a sequence of elements in S defined in the following way: $p_0 = p$, and $(p_n)^2 = p_{n-1}$. Such a sequence exists by Lemma 1. Let $Z(\{p_n\})$ be defined as in [5] and let e be the idempotent in $Z(\{p_n\})$. The author proves in [5] that e acts as a two-sided identity for all of $\{p_n\}$ and, in particular ep = p = pe which is as required by the lemma.

LEMMA 3. If S = K, then xS = x for each x in S.

Proof. Since S is topologically a closed n-cell, each proper retract of S has fixed-point property. By Wallace [9] therefore S is a group or $K \subset E$. Clearly S is not a group, so S = K consists entirely of idempotents. Also by Wallace [9], eSe = e for each $e \in E$, thus for $b \in B$, it follows that b = bSb = bS. Now for arbitrary x in S by Lemma 1, xb = x for $b \in B$, hence xS = (xb)S = x(bS) = xb = x and the lemma is established.

In the remainder it will be assumed that $S \neq K$.

LEMMA 4. $S\setminus K$ is connected.

Proof. Wallace proved in [8] that $H^p(S) \approx H^p(K)$ and since S is a closed n-cell we have $H^p(K) = 0$ for all p > 0. In particular $H^{n-1}(K) = 0$, hence K does not cut R^n [4] and since K is contained in the interior of S, K does not cut S.

DEFINITION. For x and y in S with $x \in By$ define n(By, x), the index of By relative to x, as defined by Mostert and Shields in [6]. That is:

When $x \notin By$, the mapping $f: B \to S \setminus x$ defined by f(b) = by induces a homomorphism $f^*: H^{n-1}(S \setminus x) \to H^{n-1}(B)$ where $H^{n-1}(A)$ denotes the (n-1)-Čech cohomology group of A with integer coefficients. Since $H^{n-1}(B)$ is isomorphic to the integers there exists a least positive integer k such that k generates $f^*(H^{n-1}(S \setminus x))$. For such a pair x and y in S define n(By, x) to be k.

LEMMA 5. If A is a connected space and $\sigma: A \rightarrow S$ and $\tau: A \rightarrow S$ are continuous functions such that $\tau(t') \notin B\sigma(t)$ for each t and t' in A, if $\sigma(A)$ is compact or if τ is a constant, then $n(B\sigma(t), \tau(t)) = n(B\sigma(t'), \tau(t'))$ for t and t' in A.

Proof. Assume $\sigma(A)$ is compact. Since A is connected it suffices to show that for each t in A there exists an open set U containing t such that for x

and y in U, $n(B\sigma(x), \tau(x)) = n(B\sigma(y), \tau(y))$. To show the existence of such U, let t_0 belong to A. By hypothesis $\tau(t_0)$ is not an element of $B\sigma(A)$ so there exists an open n-cell O_1 in S such that $\tau(t_0) \in O_1$ and $O_1^* \cap B\sigma(A) = \square$. Hence $B\sigma(A) \subset S \setminus O_1^*$. By hypothesis τ is a continuous function so there exists an open set U in A containing t_0 with $\tau(U) \subset O_1$. The claim is now made that $n(B\sigma(t_0), \tau(t_0)) = n(B\sigma(s), \tau(s))$ for each s in U. To establish the claim let s belong to U and define maps λ_s , λ_{t_0} , m_0 , I and J in the following way:

$$\lambda_s \colon B \to B \times A \quad \text{by} \qquad \lambda_s(b) = (b, s),$$

$$\lambda_{t_0} \colon B \to B \times A \quad \text{by} \qquad \lambda_{t_0}(b) = (b, t_0),$$

$$m_0 \colon B \times A \to S \quad \text{by} \quad m_0(b, t) = b\sigma(t),$$

and I and J are the injection maps from $S\setminus O_1^*$ to $S\setminus \tau(s)$ and $S\setminus \tau(t_0)$ respectively. Then it is easily seen that the mappings

$$\theta_s: B \to S \setminus \tau(s)$$
 defined by $\theta_s(b) = b\sigma(s)$

and

$$\theta_{t_0} \colon B \to S \setminus \tau(t_0)$$
 defined by $\theta_{t_0}(b) = b\sigma(t_0)$

are given by

$$\theta_s = Im_1 \lambda_s$$
 and $\theta_{t_0} = Jm_0 \lambda_{t_0}$

where m_1 is m_0 with the range restricted to $S \setminus O_1^*$.

The following sequences now arise from these functions:

$$H^{n-1}(S\backslash \tau(s)) \stackrel{I^*}{-\!\!\!-\!\!\!-\!\!\!-} H^{n-1}(S\backslash O_1^*) \stackrel{\lambda_s^*m_1^*}{-\!\!\!\!-\!\!\!\!-} H^{n-1}(B)$$

and the same sequence obtained by replacing s by t_0 and I^* by J^* .

Since O_1 is an open n-cell for any y in O_1 the injection map from $S \setminus O_1^*$ into $S \setminus y$ induces an isomorphism from $H^{n-1}(S \setminus y)$ onto $H^{n-1}(S \setminus O_1^*)$ [1]. Hence I^* and I^* are isomorphisms onto. By S. T. Hu [3], $\lambda_s^* = \lambda_{t_0}$ so it follows that

$$\lambda_s^* m_1^* = \lambda_{t_0}^* m_1^*$$

Looking at the above sequences it is easily seen that

$$\theta_s^*(H^{n-1}(S\backslash \tau(s))) = \theta_{t_0}^*(H^{n-1}(S\backslash \tau(t_0))).$$

Since I^* and J^* are isomorphisms onto and

$$\theta_s^* = \lambda_s^* m_1^* I^*, \qquad \theta_{t_0}^* = \lambda_{t_0}^* m_1^* J^*.$$

From this we obtain that

$$n(B\sigma(t_0), \tau(t_0)) = n(B\sigma(s), \tau(s))$$

and the first part of the proof of the lemma is complete. The remainder of the proof follows similarly.

LEMMA 6. If x belongs to $S\backslash B$, then n(Bb, x) = 1 for each $b \in B$.

Proof. Let b_0 belong to B and let $x \in S \setminus B$. Define θ from B to $S \setminus x$ by $\theta(b) = bb_0$. By hypothesis on the multiplication in B, $\theta(b) = b$ for each b in B. Let $\delta: S \setminus x \to B$ be a continuous function from $S \setminus x$ onto B such that $\delta(b) = b$ for each b in B. If ϕ denotes the function from B onto B defined by $\phi(b) = \delta\theta(b)$ then ϕ is the identity function so that

$$\phi^* \colon H^{n-1}(B) \to H^{n-1}(B)$$

is an isomorphism. From this it follows that

$$\theta^*: H^{n-1}(S \setminus x) \to H^{n-1}(B)$$

is onto since

$$\phi^* = \theta^* \delta^*.$$

Thus by the definition of $n(Bb_0, x)$ we have $n(Bb_0, x) = 1$ and the lemma is established.

LEMMA 7. For b in B and x in S with $b \in Bx$, n(Bx, b) = 0.

Proof. Let $\theta: B \to S \setminus b$ be defined by $\theta(s) = sx$. Since $b \notin Bx$ it follows that $Bx \subset S \setminus B$. For if $Bx \cap B$ were nonvoid, then for $y \in Bx \cap B$ there would exist $b_0 \in B$ such that $y = b_0x$ and in virtue of the multiplication in B, that $b = by = b(b_0x) = (bb_0)x = bx$ contrary to the assumption that $b \notin Bx$. Hence Bx is a closed subset of S contained in $S \setminus B$. Since B is the boundary of S relative to R^n there exists a subset S_0 of S with the following properties: S_0 is closed, S_0 is topologically equivalent to S and $Bx \subset S_0 \subset S \setminus B$. Now define functions i_1 and i_2 by

$$i_1: Bx \to S_0$$
 and $i_1(y) = y$ for $y \in Bx$,
 $i_2: S_0 \to S \setminus b$ and $i_2(y) = y$ for $y \in S_0$.

Also define

$$\theta_1 \colon B \to Bx$$
 by $\theta_1(y) = yx$ for $y \in B$.

Clearly $\theta = i_2 i_1 \theta_1$ so that $\theta^* = \theta_1^* i_1^* i_2^*$. Looking at the sequence defined by these functions it follows that θ^* is the zero homomorphism, for we have:

$$H^{n-1}(S\backslash b) \overset{i_2^{\textstyle *}}{\longrightarrow} H^{n-1}(S_0) \overset{i_1^{\textstyle *}}{\longrightarrow} H^{n-1}(Bx) \overset{\theta_1^{\textstyle *}}{\longrightarrow} H^{n-1}(B)$$

and $H^{n-1}(S_0) = 0$. From this it follows that n(Bx, b) = 0.

LEMMA 8. For $a \in S \setminus K$, a belongs to BS. Thus each element of $S \setminus K$ has a two-sided identity belonging to B.

Proof. Suppose there exists an element a_0 in $S\setminus K$ such that $a_0 \in BS$. Let

 $k \in K$ and $f \in B$ be fixed. Clearly $Bk \cap S \setminus K = \square$ and since $S \setminus K$ is connected it follows from Lemma 5, taking $A = S \setminus K$, $\tau = \text{identity}$ and $\sigma = \text{constant}$ map k, that n(Bk, x) = n(Bk, f) for each $x \in S \setminus K$. But a_0 belongs to $S \setminus K$ so that $n(Bk, f) = n(Bk, a_0) = 0$ by Lemma 7.

Now using the assumption that $a_0 \\\in BS$, it follows in a similar way from Lemma 5, taking A = S, $\sigma = \text{identity}$, and $\tau = \text{constant map } a_0$, that $n(Bf, a_0) = n(Bk, a_0)$. Hence by Lemma 6, $n(Bk, a_0) = 1$. This contradiction establishes the fact that $a_0 \\in BS$. The remainder of the lemma follows quite easily since each element of B is an idempotent and a right identity for all of S.

LEMMA 9. If $a \in S \setminus K$, then $Ba \neq a$.

Proof. To prove this lemma let us assume that Ba = a for some element a in $S \setminus K$. The claim is now made that with this assumption $B(S \setminus K) = S$. If this were not the case then there would exist an element p in S with $B(S \setminus K) \subset S \setminus p$. Since $B \subset B(S \setminus K)$ it follows that $p \in B$ hence it is possible to define a function $\delta: S \setminus p \to B$ such that δ is continuous and $\delta(b) = b$ for each b in b. Now for each b in b is the identity and for a, a is a constant. From this it can be concluded that the identity function on b is null-homotopic, since b is connected. This contradiction establishes the fact that b is b for some element a in b for each b in b.

Since $B(S\backslash K) = S$ and K is nonempty, there exists an element g in B and x in $S\backslash K$ such that $gx \in K$. By Lemma 8, there exists an element b in B with bx = x. Hence $x = bx = (bg)x = b(gx) \in BK \subset K$ contrary to the fact that $x \in S\backslash K$. From this we obtain that $Ba \neq a$ for each a in $S\backslash K$.

LEMMA 10. For a in $S\setminus K$, $J_a = Ba$ where J_a denotes the set of elements in S generating the same two-sided ideal as a.

Proof. Before proving this lemma let us note that the ideal generated by an element x in $S\setminus K$ is SxS. If J(x) denotes the ideal generated by x then $J(x) = x \cup xS \cup Sx \cup SxS = SxS$ since x has a two-sided identity in S.

It follows from Lemma 1 that $Ba \subset J_a$ for if $b \in B$ then J(ba) = S(ba)S = (Sb)aS = SaS = J(a) so that $ba \in J_a$.

It remains only to show that $J_a \subset Ba$. First let us note that $Ba \cap K = \square$ since $a \notin K$, as in the proof of Lemma 9. Hence $K \subset S \setminus Ba$, and if P denotes the component of $S \setminus Ba$ containing K it follows from Wallace [9] that $P^* \setminus P = Ba$. For an element p in $P \setminus K$, $Bp \cap Ba = \square$ for if not then $b_1p = b_2a$ for elements b_1 and b_2 in B. By Lemma 8 there exists b in B such that bp = p, hence $p = bp = (bb_1)p = b(b_1p) = b(b_2a) = (bb_2)a = ba$ contrary to the fact that $p \in P$. Hence Bp does not meet Ba and since $Bp \cap P$ contains p, Bp is connected and P is a component of $S \setminus Ba$ we have $Bp \subset P$. By assumption $p \notin K$, hence $K \subset S \setminus Bp$, as in the proof of Lemma 9. Let Q be the component of $S \setminus Bp$ containing K. Clearly $K \subset Q \subset P$ and as before $Q^* \setminus Q = Bp \subset P$. Let $I(p) = J(p) \setminus J_p$. Then I(p) must contain K, I(p) does not meet Bp and by

Wallace [9], I(p) is connected and $I(p)^* = J(p)$. The last statement follows from the fact that $Bp \subset J_p$ and by Lemma 9, $Bp \neq p$ so that $J_p \neq p$. Since I(p) is connected and contains K, $I(p) \subset Q$, hence $J(p) = I(p)^* \subset Q^* = Q \cup Bp \subset P$. From this discussion we obtain that $J(p) \subset P$ for each $p \in P \setminus K$, hence $J_a \cap P = \square$. But $I(a) \subset P$ so that $J(a) = I(a)^* \subset P^* = P \cup Ba$, therefore $J_a \subset Ba$ and Lemma 10 is established.

DEFINITION. For a and b in $S\setminus K$ define $a \le b$ if and only if there exists an element c in $S\setminus K$ such that a=bc.

LEMMA 11. \leq as defined above is a partial order on $S\backslash K$.

Proof. (i) Since $a \in S$, a = af for $f \in B$, so that $a \le a$ and \le is reflexive.

- (ii) If a and b belong to $S \setminus K$ and $a \le b$, and $b \le a$, then there exist elements c and d in $S \setminus K$ such that a = bc and b = ad. Thus aS = (bc)S = b(cS) $\subset bS = (ad)S = a(dS) \subset aS$, or aS = bS. Hence SaS = SbS so that $J_a = J_b$ and by Lemma 10, Ba = Bb. Since a and b both belong to $S \setminus K$ there exist elements e and f in B such that ea = a and fb = b. Now $a \in Ba = Bb$ so that a = gb for some $g \in B$. From these equalities it follows that a = ea = e(gb) = (eg)b = eb = e(ad) = (ea)d = ad = b so that $\leq a$ is antisymmetric.
 - (iii) Clearly \leq is transitive.
 - (i), (ii) and (iii) show that \leq is a partial order on $S\setminus K$.

NOTATION. For the minimal ideal K in S, let Q denote the Rees Quotient of S by K and let π denote the natural map from S to Q. By Rees [7], Q is a compact connected semigroup with zero, $\pi(K)$, and π is continuous and a homomorphism.

It should be noted at this point that π restricted to $S\backslash K$ is an iseomorphism. For this reason, in the discussion that follows $S\backslash K$ and $\pi(S\backslash K)$, the former a subset of S and the latter a subset of S will be considered the same. This identification will make the discussion simpler and somewhat shorter.

LEMMA 12. There exists an I-semigroup $J \subset Q$ such that Q = BJ.

Proof. Let f be a fixed element in B. Then fQ is a compact connected semigroup with identity f and zero $\pi(K)$. Define a partial order on fQ by $a \le b$ if and only if a = bc for some $c \in fQ$. By Lemma 11, the fact that f is a right identity for all of S and the fact that $\pi(K)$ is a zero for fQ, it is easily seen that \le is a closed partial order on fQ. Hence by Koch [2] there exists an I-semigroup $J \subset fQ$ with endpoints f and $\pi(K)$.

The next step in the proof is to show that BJ = Q. If it were the case that $S = BJ_0 \cup K$, where $J_0 = J \setminus \pi(K)$, it would follow immediately that $Q = \pi(S) = \pi(BJ_0) \cup \pi(K) = BJ$. Hence it suffices to show that $S = BJ_0 \cup K$.

Let us assume, to the contrary, that there exists an element p in S with p not in $BJ_0 \cup K$. Since J_0 is a half-open interval and $J = J_0 \cup \pi(K)$ is closed there exists an element k_0 in K with $J_0 \subset J_0 \cup k_0 \subset J_0^*$, where J_0^* denotes the closure of J_0 in S. Since J_0 is connected, $J_0 \cup k_0$ is connected and by assump-

tion $p \in B(J_0 \cup k_0)$. Thus by Lemmas 5 and 7, $n(Bp, k_0) = n(Bp, f) = 0$. Now $p \in S \setminus K$ and since $S \setminus K$ is connected and $(B(S \setminus K)) \cap K = \square$, it follows that $n(Bp, k_0) = n(Bf, k_0) = 1$, again by Lemmas 5 and 6. This is a contradiction so p must belong to $B(J_0 \cup k_0)$. With the preceding remarks the lemma is established.

LEMMA 13. There exists an element k_0 in $K\backslash K^0$ such that if T denotes J_0^* , then $T = J_0 \cup k_0$ and $K\backslash K^0 = Bk_0$.

Proof. From the definition of J_0 we see that $\pi(J_0^*\backslash J_0) = \pi(K)$, hence $J_0^*\backslash J_0 \subset K$. Now let $k_0 \in J_0^*\backslash J_0$. The claim is made that $K\backslash K^0 = Bk_0$. To prove this claim let $k = gk_0$ for some $g \in B$ and assume $k \in U$, an open set. Since $k = gk_0$ and $k \in U$, there must exist open sets V_0 and V_1 containing g and k_0 , respectively, such that $V_0V_1 \subset U$. Now $k_0 \in J_0^*\backslash J_0$ and V_1 is open containing k_0 , hence there exists an element t in J_0 with $t \in V_1$. Since $t \in S\backslash K$, it follows that gt also belongs to $S\backslash K$ so that $U \cap S\backslash K \neq \square$. Since k was an arbitrary element in Bk_0 , it follows that $Bk_0 \subset K\backslash K^0$.

Conversely, let $k \in K \setminus Bk_0$. If it can be shown that $k \in K^0$ then it will be established that $Bk_0 = K \setminus K^0$. To prove $k \in K^0$, let P be the component of $S \setminus Bk_0$ containing k. As before, since $J_0 \cup k_0$ is connected $n(Bk_0, k) = n(Bf, k) = 1$. If it were the case that $B \subset P$, then it would be true that $n(Bk_0, k) = n(Bk_0, f) = 0$ since P is connected and does not meet Bk_0 . This is a contradiction to the above statement that $n(Bk_0, k) = 1$, hence B does not meet the component P. Thus the boundary of P relative to R^n is contained in Bk_0 which is a subset of K. Now if P is not contained in K, then K is a closed proper subset of $P \cup K$ containing the boundary of $P \cup K$. Hence

$$i^*: H^{n-1}(P \cup K) \rightarrow H^{n-1}(K)$$

is not onto where i^* is induced by the injection map [4]

$$i: K \to P \cup K$$
.

By Wallace [8], however, $H^{n-1}(K) \approx H^{n-1}(S) = 0$, so that i^* is onto. Thus $P \cup K = K$, that is $P \subset K$. Since P is a component of an open set in S, P is also open and therefore $k \in P \subset K^0$. This completes the proof of the statement that $Bk_0 = K \setminus K^0$.

In order to complete the proof of this lemma it remains only to show that $T=J_0\cup k_0$. By definition of T we have $T\subset fS$ since $J_0\subset fS$ and therefore $T=J_0^*\subset (fS)^*=fS$. This shows that f is a two-sided identity for T. In the above argument it was shown that $J_0^*\setminus J_0\subset K\setminus K^0=Bk_0$. Now let $k\in T\setminus J_0$, then $k=gk_0$ for some $g\in B$ and fk=k, $fk_0=k_0$. Hence $k=fk=f(gk_0)=(fg)k_0=fk_0=k_0$ so that $T\setminus J_0=k_0$. Thus $T=J_0\cup k_0$ and the proof of the lemma is complete.

LEMMA 14. T is an I-semigroup with zero k_0 and identity f. Also $BT = S \setminus K^0$.

Proof. Clearly T is a semigroup and an arc with zero k_0 and identity f. Also $S \setminus K^0 = S \setminus K \cup K \setminus K^0 = BJ_0 \cup Bk_0 = B(J_0 \cup k_0) = BT$. This concludes Lemma 14.

LEMMA 15. For k in K, kS = k.

Proof. First let us note that by Wallace [9], $K \subset E$ and kSk = k for each $k \in K$. If $K^0 = \square$, then $Bk_0 = K$ so that $k_0K = k_0(Bk_0) \subset k_0Sk_0 = k_0$. Thus $k_0S = k_0$ since $k_0S \subset k_0K$. If $K^0 \neq \square$ then Bk_0 , since it is the boundary of K relative to R^n is an ((n-1), G)-rim for K, (see [10]). Hence by the dual of Wallace's theorem [10], if $k \in K$ and $(Bk_0)k = Bk_0$ it follows that Kk = k. Since $k_0^2 = k_0$, we have $(Bk_0)k_0 = Bk_0^2 = Bk_0$ so that $Kk_0 = K$. Hence $k_0S \subset k_0K = k_0(Kk_0) = k_0$.

In either case, $K^0 = \square$ or K^0 nonempty it has been shown that $k_0S = k_0$. Now let k be an arbitrary element of K. Then $k_0k = k_0$ so that $kk_0 = k(k_0k) = k$ since kSk = k. Hence $kK = (kk_0)K = k(k_0K) = kk_0 = k$ and it follows that kS = k which concludes the proof of the lemma.

LEMMA 16. Let t_0 and t_1 belong to T and let b_0 and b_1 be elements of B. Then $(b_0t_0)(b_1t_1) = b_0(t_0t_1)$ and if $b_0t_0 = b_1t_1$ then $t_0 = t_1$.

Proof. This lemma follows immediately from the fact that f is an identity for T and fb=f for each b in B.

LEMMA 17. K is a deformation retract of S.

Proof. Define $\theta: S \times T \rightarrow S$ by $\theta(s, t) = st$. T is a closed interval with endpoints f and k_0 , $\theta(s, f) = sf = s$ and $\theta(s, k_0) = sk_0 \in K$. Also for $k \in K$, $\theta(k, k_0) = kk_0 = k$. Since θ is continuous it follows that K is a deformation retract of S. With Lemma 17 the proof of the theorem is now complete.

EXAMPLE. An example of a semigroup described by the theorem and having a nontrivial kernel for n=2 can be constructed as follows.

Let K_0 be a closed two-cell and B_0 the bounding 1-sphere of K_0 . Define multiplication in K_0 by xy = x for all x and y in K_0 . Let T_0 be the closed unit interval with real multiplication. Then if $S = (K_0 \times \{0\}) \cup (B_0 \times T_0)$ and products are defined in S by coordinate-wise multiplication, S is a semigroup as described by the theorem, where B, of course, is $B_0 \times \{1\}$.

Clearly S is topologically a closed two-cell and is a semigroup with a non-trivial kernel $K = K_0 \times \{0\}$. If k_0 is a fixed element of B_0 , then $T = \{k_0\} \times T_0$ is an I-semigroup which has the property that $S \setminus K^0 = BT$.

In this example, for $a \in S \setminus K$, the representation of a = bt for $b \in B$ and $t \in T$ is unique. In [5], the author gives an example of such a semigroup described above but in it there exists an element in $S \setminus K$ for which this representation is not unique.

For n=2, different examples may be constructed by varying the multiplication of the *I*-semigroup T_0 . (See [6].)

For any integer n > 2, examples can be constructed in a similar way. That is, let K_0 be a closed *n*-cell with B_0 the bounding (n-1)-sphere and follow the same construction as above.

BIBLIOGRAPHY

- 1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, Princeton University Press, 1952.
 - 2. R. J. Koch, Ordered semigroups in partially ordered semigroups, unpublished manuscript.
- 3. S. T. Hu, Cohomology rings of compact connected groups and their homogeneous spaces, Ann. of Math. vol. 55 (1952) pp. 391-419.
- 4. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton, Princeton University Press, 1948.
- 5. Anne Lester, Some semigroups on the two-cell, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 648-655.
- 6. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. vol. 65 (1957) pp. 117-143.
 - 7. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. vol. 36 (1940) pp. 387-400.
- 8. A. D. Wallace, Cohomology, dimension and mobs, Summa Brasil. Math. vol. 3 (1953) pp. 43-54.
- 9. ——, Ideals in compact connected semigroups, Nederl. Akad. Wetensch. Proc. Ser. A., vol. 59 = Indag. Math. vol. 18 (1956) pp. 535-539.
- 10. ——, The Gebietstreue in semigroups, Nederl. Akad. Wetensch. Proc. Ser. A., vol. 59 = Indag. Math. vol. 18 (1956) pp. 271-274.
- 11. ——, The structure of topological semigroups, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 95-112.

TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA